organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

K. Palani,^a M. N. Ponnuswamy,^a* A. R. Suresh Babu,^b R. Raghunathan^b and M. Nethaji^c

^aDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and ^cDepartment of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India

Correspondence e-mail: mnpsy2004@hotmail.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.040 wR factor = 0.108 Data-to-parameter ratio = 11.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved In the title compound, $C_{26}H_{20}ClN_3O_3$, the central pyrrolidine ring adopts an envelope conformation. In the crystal structure, the molecules exist as centrosymmetric $N-H \cdots O$ hydrogenbonded dimers. The dimers are linked *via* $C-H \cdots O$ hydrogen bonds, forming a chain along the *b* axis. Received 17 October 2005 Accepted 17 November 2005 Online 23 November 2005

Comment

The spiro-pyrrolidine ring system is a frequently encountered structural motif in many pharmacologically relevant alkaloids (Cordel, 1981). A new class of spiro-pyrrolidines has been screened for their antibacterial and antifungal activity against ten human pathogenic bacteria and four dermatophytic fungi (Raj *et al.*, 2003). In view of this medicinal importance, the crystal structure of the title compound, (I), has been determined and the results are presented here.

A ZORTEP (Zsolnai, 1997) plot of the molecule is shown in Fig.1. The slightly longer N-C and C-C bond lengths (Table 1) in the pyrrolidine ring are due to the bulky substituents and the steric interactions between them (Seshadri *et al.*, 2003; Abdul Ajees *et al.*, 2002). The N2–C3 and C3–O1 bond lengths show electron delocalization over atoms N2, C3 and O2. A similar situation is also observed for atoms N3, C11 and O2. In the oxindole ring systems, the variations in endocyclic angles are due to the fusion of five- and six-membered rings (Govind *et al.*, 2003).

The pyrrolidine ring adopts an envelope conformation. The asymmetry parameter $\Delta C_s(C2)$ is 0.065 (1) (Nardelli, 1995) and the puckering parameters (Cremer & Pople, 1975) q_2 and φ_2 are 0.467 (2) Å and 46.8 (2)°, respectively. Atom C2 deviates by 0.698 (2) Å from the N1/C10/C18/26 plane. This causes the significant contraction of the N1–C2–C10 [99.8 (1)°] angle. The methyl group substituted at N1 is in the equatorial position [C1–N1–C26–C18 = 151.80 (15)°]. The oxindole

Figure 1

A view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines indicate hydrogen bonds.

Figure 2

The crystal packing of (I), viewed approximately along the a axis. Dashed lines indicate hydrogen bonds. H atoms have been omitted.

planes O1/N2/C2-C9 and O2/N3/C10-C17 form dihedral angles of 89.23 (6) and 74.39 (7) $^{\circ}$, respectively, with the N1/ C10/C18/26 plane.

The molecular structure is stabilized by intramolecular C- $H \cdots O$ and $C - H \cdots \pi$ interactions. In the crystal structure, inversion-related molecules form N-H···O hydrogenbonded dimers, which are linked via C-H···O hydrogen bonds, forming a chain along the b axis (Fig. 2). A short $Cl1 \cdots O3(x - 1, y, z)$ contact [3.256 (3) Å] is also observed in the structure.

Experimental

A mixture of (E)-3-(4'-chlorophenacylidine)oxindole (1 mmol), isatin (indole-2,3-dione) (1 mmol), and sarcosine (N-methylglycine) (1 mmol) was refluxed in aqueous methonal for 3 h. On completion of the reaction the solvent was evaporated in vacuo and the resulting crude product was purified by coloumn chromatography using an nhexane-ethyl acetate mixture (7:3 v/v) as eluent. The title compound was recrystallized from a methanol-chloroform mixture (2:1 v/v).

4491 independent reflections

 $R_{\rm int} = 0.016$

 $\theta_{\rm max} = 27.3^{\circ}$

 $h = -12 \rightarrow 12$

 $k = -13 \rightarrow 13$ $l = -14 \rightarrow 15$

3746 reflections with $I > 2\sigma(I)$

Crystal data

$C_{26}H_{20}ClN_{3}O_{3}$	Z = 2
$M_r = 457.90$	$D_x = 1.373 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 9.795 (6) Å	Cell parameters from 6234
b = 10.316 (6) Å	reflections
c = 11.670 (7) Å	$\theta = 2.1-27.3^{\circ}$
$\alpha = 104.275 \ (9)^{\circ}$	$\mu = 0.21 \text{ mm}^{-1}$
$\beta = 93.998 \ (10)^{\circ}$	T = 293 (2) K
$\gamma = 102.305 \ (9)^{\circ}$	Block, colourless
$V = 1107.2 (12) \text{ Å}^3$	$0.22\times0.20\times0.20$ mm

Data collection

Bruker SMART APEX areadetector diffractometer ()) scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.955, \ T_{\max} = 0.959$ 11608 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0518P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.040$	+ 0.2477P]
$vR(F^2) = 0.108$	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} = 0.001$
491 reflections	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
79 parameters	$\Delta \rho_{\rm min} = -0.30 \text{ e} \text{ Å}^{-3}$
All H-atom parameters refined	Extinction correction: SHELXL97
	Extinction coefficient: 0.0105 (18)

Table 1 Selected geometric parameters (Å, °).

Cl1-C23	1.735 (2)	O1-C3	1.218 (2)
N3-C11	1.354 (2)	N1-C1	1.460 (2)
N3-C17	1.400 (2)	N1-C2	1.469 (2)
O2-C11	1.2166 (18)	N1-C26	1.477 (2)
N2-C3	1.358 (2)	O3-C19	1.214 (2)
N2-C9	1.394 (2)		
C15-C16-C17	119.62 (14)	C1-N1-C26	113.85 (14)
C12-C17-C16	121.93 (15)	C2-N1-C26	107.34 (13)
C7-C8-C9	118.93 (15)	C4-C9-C8	122.44 (16)
C1-N1-C2	115.58 (14)		

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C18-H18···O1	0.97 (2)	2.42 (2)	2.936 (3)	113 (1)
C26−H26B···O3	0.97 (2)	2.43 (2)	2.848 (3)	106 (1)
$N2-H2\cdots O2^{i}$	0.85 (2)	2.05 (2)	2.896 (3)	172 (2)
$C13-H13\cdots O1^{ii}$	0.92(2)	2.40 (2)	3.217 (3)	148 (2)
$C7-H7\cdots Cg1$	0.96 (2)	2.90 (2)	3.572 (3)	128 (1)
$C12-H12\cdots Cg2^{iii}$	0.94 (2)	2.90 (2)	3.730 (3)	149 (2)

Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) x, y + 1, z; (iii) -x + 1, -y + 1, -z. Cg1 and Cg2 denote the centroids of the C12–C17 and C4–C9 benzene rings, respectively.

H atoms were located in a difference Fourier map and refined isotropically. The ranges of C-H and N-H bond lengths are 0.92 (2)-1.03 (2) Å and 0.84 (2)-0.85 (2) Å, respectively.

Data collection: SMART (Bruker, 2001): cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine

structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ZORTEP* (Zsolnai, 1997); software used to prepare material for publication: *PLATON* (Spek, 2003).

KP and MNP thank the University Grants Commission (UGC), New Delhi, for financial support under the 'University with Potential for Excellence' programme.

References

Abdul Ajees, A., Manikandan, S. & Raghunathan, R. (2002). Acta Cryst. E58, 0802–0804.

Bruker (2001). SAINT (Version 6.28a) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.

Cordel, G. (1981). Introduction to Alkaloids, A Biogenetic Approch. New York: Wiley International.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

- Govind, M. M., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sridhar, G. & Raghunathan, R. (2003). Acta Cryst. E**59**, 01438–01440.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Raj, A. A., Raghunathan, R., Srridevi Kumari., M. R. & Raman, N. (2003). Bioorg. Med. Chem. 2, 407–419.

Seshadri, P. R., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sureshbabu, A. R. & Raghunathan, R. (2003). Acta Cryst. E59, o1458– 01460.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.