Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

K. Palani, ${ }^{\text {a }}$ M. N. Ponnuswamy, ${ }^{\text {a }}{ }^{\text {* }}$

A. R. Suresh Babu, ${ }^{\text {b }}$
R. Raghunathan ${ }^{\text {b }}$ and M. Nethaji ${ }^{\text {c }}$
${ }^{\text {a Department of Crystallography and Biophysics, }}$ University of Madras, Guindy Campus, Chennai 600 025, India, ${ }^{\text {b }}$ Department of Organic
Chemistry, University of Madras, Guindy
Campus, Chennai 600 025, India, and
${ }^{\text {c }}$ Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India

Correspondence e-mail:
mnpsy2004@hotmail.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.040$
$w R$ factor $=0.108$
Data-to-parameter ratio $=11.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4'-(4-Chlorobenzoyl)- $\mathbf{1}^{\prime}$-methyldispiro-[indole-3(2H), 2^{\prime}-pyrrolidine- $3^{\prime}, 3^{\prime \prime}\left(2^{\prime \prime} H\right)$ -indole]-2,2"-dione

In the title compound, $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{3}$, the central pyrrolidine ring adopts an envelope conformation. In the crystal structure, the molecules exist as centrosymmetric $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogenbonded dimers. The dimers are linked via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a chain along the b axis.

Comment

The spiro-pyrrolidine ring system is a frequently encountered structural motif in many pharmacologically relevant alkaloids (Cordel, 1981). A new class of spiro-pyrrolidines has been screened for their antibacterial and antifungal activity against ten human pathogenic bacteria and four dermatophytic fungi (Raj et al., 2003). In view of this medicinal importance, the crystal structure of the title compound, (I), has been determined and the results are presented here.

(I)

A ZORTEP (Zsolnai, 1997) plot of the molecule is shown in Fig.1. The slightly longer $\mathrm{N}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ bond lengths (Table 1) in the pyrrolidine ring are due to the bulky substituents and the steric interactions between them (Seshadri et al., 2003; Abdul Ajees et al., 2002). The N2-C3 and C3-O1 bond lengths show electron delocalization over atoms $\mathrm{N} 2, \mathrm{C} 3$ and O2. A similar situation is also observed for atoms N3, C11 and O 2 . In the oxindole ring systems, the variations in endocyclic angles are due to the fusion of five- and six-membered rings (Govind et al., 2003).

The pyrrolidine ring adopts an envelope conformation. The asymmetry parameter $\Delta C_{s}(\mathrm{C} 2)$ is 0.065 (1) (Nardelli, 1995) and the puckering parameters (Cremer \& Pople, 1975) q_{2} and φ_{2} are 0.467 (2) \AA and 46.8 (2) ${ }^{\circ}$, respectively. Atom C2 deviates by 0.698 (2) A from the N1/C10/C18/26 plane. This causes the significant contraction of the $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 10$ [99.8 (1) ${ }^{\circ}$] angle. The methyl group substituted at N 1 is in the equatorial position $\left[\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 26-\mathrm{C} 18=151.80(15)^{\circ}\right]$. The oxindole

Received 17 October 2005 Accepted 17 November 2005 Online 23 November 2005

Figure 1
A view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines indicate hydrogen bonds.

Figure 2
The crystal packing of (I), viewed approximately along the a axis. Dashed lines indicate hydrogen bonds. H atoms have been omitted.
planes $\mathrm{O} 1 / \mathrm{N} 2 / \mathrm{C} 2-\mathrm{C} 9$ and $\mathrm{O} 2 / \mathrm{N} 3 / \mathrm{C} 10-\mathrm{C} 17$ form dihedral angles of 89.23 (6) and $74.39(7)^{\circ}$, respectively, with the $\mathrm{N} 1 /$ C10/C18/26 plane.

The molecular structure is stabilized by intramolecular C$\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. In the crystal structure, inversion-related molecules form $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogenbonded dimers, which are linked via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a chain along the b axis (Fig. 2). A short $\mathrm{Cl} 1 \cdots \mathrm{O} 3(x-1, y, z)$ contact $[3.256$ (3) \AA] is also observed in the structure.

Experimental

A mixture of (E)-3-(4'-chlorophenacylidine)oxindole (1 mmol), isatin (indole-2,3-dione) (1 mmol), and sarcosine (N-methylglycine) (1 mmol) was refluxed in aqueous methonal for 3 h . On completion of the reaction the solvent was evaporated in vacuo and the resulting crude product was purified by coloumn chromatography using an n -
hexane-ethyl acetate mixture ($7: 3 \mathrm{v} / \mathrm{v}$) as eluent. The title compound was recrystallized from a methanol-chloroform mixture ($2: 1 \mathrm{v} / \mathrm{v}$).

Crystal data

$\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.373 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

$M_{r}=457.90$
Triclinic, $P \overline{1}$
$a=9.795$ (6) \AA
$b=10.316$ (6) \AA
$c=11.670$ (7) \AA
$\alpha=104.275$ (9) ${ }^{\circ}$
$\beta=93.998(10)^{\circ}$
$\gamma=102.305(9)^{\circ}$
$V=1107.2(12) \AA^{3}$
Mo $K \alpha$ radiation
Cell parameters from 6234 reflections
$\theta=2.1-27.3^{\circ}$
$\mu=0.21 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.22 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART APEX areadetector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.955, T_{\max }=0.959$
11608 measured reflections

> 4491 independent reflections
> 3746 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.016$
> $\theta_{\max }=27.3^{\circ}$
> $h=-12 \rightarrow 12$
> $k=-13 \rightarrow 13$
> $l=-14 \rightarrow 15$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.108$
$S=1.04$
4491 reflections
379 parameters
All H -atom parameters refined

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0518 P)^{2}\right.} \\
&+0.2477 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.28 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: SHELXL97
Extinction coefficient: 0.0105 (18)

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$\mathrm{Cl} 1-\mathrm{C} 23$	$1.735(2)$	$\mathrm{O} 1-\mathrm{C} 3$	$1.218(2)$
$\mathrm{N} 3-\mathrm{C} 11$	$1.354(2)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.460(2)$
$\mathrm{N} 3-\mathrm{C} 17$	$1.400(2)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.469(2)$
$\mathrm{O} 2-\mathrm{C} 11$	$1.2166(18)$	$\mathrm{N} 1-\mathrm{C} 26$	$1.477(2)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.358(2)$	$\mathrm{O} 3-\mathrm{C} 19$	$1.214(2)$
$\mathrm{N} 2-\mathrm{C} 9$	$1.394(2)$		
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$119.62(14)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 26$	$113.85(14)$
$\mathrm{C} 12-\mathrm{C} 17-\mathrm{C} 16$	$121.93(15)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 26$	$107.34(13)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$118.93(15)$	$\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 8$	$122.44(16)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$115.58(14)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 18-\mathrm{H} 18 \cdots \mathrm{O} 1$	$0.97(2)$	$2.42(2)$	$2.936(3)$	$113(1)$
$\mathrm{C} 26-\mathrm{H} 26 B \cdots \mathrm{O} 3$	$0.97(2)$	$2.43(2)$	$2.848(3)$	$106(1)$
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.85(2)$	$2.05(2)$	$2.896(3)$	$172(2)$
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{O} 1^{\mathrm{ii}}$	$0.92(2)$	$2.40(2)$	$3.217(3)$	$148(2)$
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Cg} 1$	$0.96(2)$	$2.90(2)$	$3.572(3)$	$128(1)$
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{Cg} 2^{\mathrm{iii}}$	$0.94(2)$	$2.90(2)$	$3.730(3)$	$149(2)$

Symmetry codes: (i) $-x+1,-y,-z+2$; (ii) $x, y+1, z$; (iii) $-x+1,-y+1,-z . C g 1$
and $C g 2$ denote the centroids of the $\mathrm{C} 12-\mathrm{C} 17$ and $\mathrm{C} 4-\mathrm{C} 9$ benzene rings, respectively.

H atoms were located in a difference Fourier map and refined isotropically. The ranges of $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ bond lengths are 0.92 (2) -1.03 (2) \AA and 0.84 (2)-0.85 (2) \AA, respectively.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine

organic papers

structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

KP and MNP thank the University Grants Commission (UGC), New Delhi, for financial support under the 'University with Potential for Excellence' programme.

References

Abdul Ajees, A., Manikandan, S. \& Raghunathan, R. (2002). Acta Cryst. E58, o802-o804.
Bruker (2001). SAINT (Version 6.28a) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.

Cordel, G. (1981). Introduction to Alkaloids, A Biogenetic Approch. New York: Wiley International.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Govind, M. M., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sridhar, G. \& Raghunathan, R. (2003). Acta Cryst. E59, o1438-o1440.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Raj, A. A., Raghunathan, R., Srridevi Kumari., M. R. \& Raman, N. (2003). Bioorg. Med. Chem. 2, 407-419.
Seshadri, P. R., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sureshbabu, A. R. \& Raghunathan, R. (2003). Acta Cryst. E59, o1458o1460.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

